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Abstract

First Solar Neutrinos from KamLAND:
A Measurement of the 8B Solar Neutrino Flux

by

Lindley Anne Winslow
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Stuart J. Freedman, Chair

The result of this work is a measurement of the 8B solar neutrino flux using neutrino-electron
elastic scattering in KamLAND with a 5 MeV threshold. KamLAND is a 1 kilo-ton liquid
scintillating detector located in Kamioka, Japan. The total 118 kt-day exposure results in a
flux of 1.87+0.24(stat.)40.32(syst.) x 106 cm~2s~!. The uncertainty in the measurement is
dominated by the statistics of the candidate sample and the uncertainty in ' Be production
from muon spallation. This result is consistent with previous measurements and predictions
from the Standards Solar Model with matter enhanced neutrino oscillation.

Professor Stuart J. Freedman
Dissertation Committee Chair
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Chapter 1

Introduction

The neutrino is a remarkable particle. From its birth as the solution to energy
non-conservation in the beta decay of unstable nuclei to its signature in the cosmic mi-
crowave background, it has been the thread tying together nuclear physics, particle physics,
astrophysics and cosmology. The last 10 years have seen great strides made in understand-
ing the physics of the neutrino. It has been discovered through measurements of reactor,
atmospheric and solar neutrinos that neutrinos oscillate and therefore have mass. The
phenomenon of neutrino oscillation is the result of the flavor eigenstates of the neutrino
being different than the mass eigenstates. Neutrinos are produced in definite flavor eigen-
states, the electron flavor being the most familiar flavor eigenstate. However, the neutrino
propagates through space as a definite mass eigenstate leading to a classic quantum os-
cillation scenario. The Standard Model of Particle Physics assumes a mass-less neutrino
and therefore neutrino oscillation is evidence of new physics. The measurements of solar
neutrinos provided the first clues that the physics of the neutrino was more complicated
than predicted by the Standard Model.

Standard solar models predict that our sun is stable to gravitational collapse due
to the power generated by a series of nuclear reactions that also produce neutrinos. It
was verifying these reactions that led Ray Davis down into the Homestake mine in 1965
to measure solar neutrinos. However, the experiment consistently measured about half of
the predicted flux. This result was verified by other experiments using different detector
technologies, creating the famous “Solar Neutrino Problem”. With the exception of the SNO
neutral current results, all of these experiments were either more sensitive to or only sensitive
to electron flavor neutrinos, the flavor of neutrinos from the sun. Neutrino oscillation solves
the solar neutrino problem because an electron flavor neutrino that oscillates into another
flavor will not be detected by these experiments, and the experiments will report a deficit
of neutrinos.

The two key experiments that form the foundation of our understanding of oscilla-
tion in solar neutrinos are SNO and Super Kamiokande, both water Cerenkov experiments.
SNO used heavy water, water formed with deuterium, to measure the total neutrino flux in
all flavors. This measurement, the SNO neutral current result, is consistent with standard
solar model predictions. Super Kamiokande used an immense volume of regular water to
make a very precise measurement of the oscillated neutrino flux using neutrino elastic scat-



tering, a reaction that is mostly sensitive to electron flavor neutrinos. Cerenkov detectors
are limited by a minimum energy threshold of ~5MeV and therefore only the highest energy
solar neutrinos can be detected. At these energies the 8B neutrinos dominate the flux even
though they represent a very small fraction of the total solar neutrino flux.

This work presents the measurement of the ®B solar neutrino flux using neutrino-
electron elastic scattering in KamLAND. Due to its size and background levels, KamLAND
is not the ideal detector for this measurement, but with almost 1500 days of data a rea-
sonable measurement is possible. The KamLAND detector uses scintillation light to detect
particles, so this measurement has different systematic uncertainties compared to the wa-
ter Cerenkov measurements. The results of this work provide an important addition to
the SNO and Super Kamiokande results. As a scintillating detector, KamLAND has the
possibility of a lower energy threshold for both the measurement of 8B neutrinos and the
more numerous lower energy solar neutrino branches. The present analysis also explores
this possibility.

The following chapters provide a more in depth explanation of the physics of
the sun and solar neutrino production, Chapter 2, the experiments that molded our current
understanding of neutrinos physics, Chapter 3, and the theory of neutrino oscillation, Chap-
ter 4. The details of the measurement of 8B solar neutrinos with KamLAND commences in
Chapter 5 with the detector overview followed by descriptions of the algorithms that turn
the output of the KamLAND electronics into possible neutrino events, Chapter 6.

Because of their nature as weakly interacting particles, the neutrino signal is easily
overwhelmed by backgrounds. One of the most difficult backgrounds to quantify are those
induced by muon spallation. This sort of background is ubiquitous to low background
experiments whether they are looking to detect neutrinos, dark matter, or rare processes like
neutrino-less double-beta decay. The light isotopes produced by muon spallation, especially
HBe, are the most problematic background in the present analysis. For this reason, muon
spallation is studied using both simulation, Chapter 7, and analysis of KamLAND data,
Chapter 8. The other major backgrounds come from the decay of 28T, a daughter of the
232Th decay chain, and gamma rays produced in the detector and surrounding rock. These
and other backgrounds are assessed in Chapter 9. This chapter also presents the details of
the extraction and analysis of ®B candidates that leads to the 8B neutrino flux measurement.

This work concludes in Chapter 10 with a comparison of the KamLAND result with
previous measurements, possible improvements of this measurement, and the prospects for
future measurements of solar neutrinos with KamLAND and other experiments. One of the
issues that will be introduced in Chapter 2 is a new solar model problem. It is the result of
improved solar heavy element abundances leading to a discrepancy between Standard Solar
Model predictions and helioseismology. The analysis of neutrino-electron elastic scattering,
which is the subject of this analysis, does not have the sensitivity to differentiate between
the heavy element abundances. However, Chapter 10 discusses new experiments that may
resolve this issue.



Chapter 2

The Standard Solar Model

The Sun is our closest star. It is a rather boring, middle aged star, Fig. 2.1,
especially compared to the more exotic objects the cosmos has to offer. Due to its proximity,
its mass, radius, luminosity, and photon spectrum are all precisely measured unlike other
objects where at most one property is measured to the same level of precision. The Earth’s
geological record is a rich source of data on the formation of the solar system, as is data
from the other planets, meteorites, comets, and the solar wind. This is all information
unique to our star. Since astrophysics extrapolates near objects to distant ones, a thorough
understanding of our Sun is essential.

Solar neutrinos are produced by the nuclear reactions that power the Sun and
provide a probe straight to the core of the Sun. The purpose of this chapter is to describe
how stellar structure and evolution are used to calculate the present day neutrino fluxes. A
brief explanation of helioseismology presents the important results that verify standard solar
model predictions. Recently, new measurements of the heavy element abundance in the Sun
have resulted in discrepancies between helioseismology and stand solar model results. The
consequences of these discrepancies are discussed.

2.1 Standard Solar Models

Standard solar models are stellar evolution simulations that are constrained to
converge to our present day Sun. The models typically start with a zero age main sequence
star, ZAMS, with a mass of 1 M. This is a new star burning only hydrogen in its core.
The mechanism describing how the gas coalesced is not necessary for the modeling the
star’s time on the main sequence, but these details are currently a major area of research.
However, it is critical that the phase just prior to the ZAMS involves convection throughout
the whole volume, implying complete mixing, and a homogenous composition.

As the model evolves in time, its structure is determined by the four equations of
stellar structure. The notation is from Ref. [1]. Each equation includes approximations and
assumptions. The first equation insures conservation of mass,

(fi—:'j = 47r?p, (2.1)



Figure 2.1: The basic structure of the Sun. Photons scatter many times due to the Sun’s
high opacity, in fact it takes a photon ~10,000 yrs to escape the Sun. In contrast, the
weakly interacting neutrinos stream out. The very thin photosphere is not shown to scale.



where m is the mass enclosed within r and p is the density as a function of r. The Sun will
only lose 0.01% of its mass over its time on the main sequence, conservation of mass is a
good approximation. The second equation is hydrostatic equilibrium, radiative and particle
pressures balancing gravity,

ap Gm

dm ~— A4mrt
If this equation were violated significantly, the Sun would collapse within about an hour.
The most important equation for solar neutrinos accounts for energy production per unit
mass,

(2.2)

dl o dl'  6dP
— =€—¢, —Cp—+ ——.
dm R
The variable [ is the energy per unit time through a sphere of radius . The term € — ¢, is
the energy produced per unit mass by nuclear reactions minus that lost due to neutrinos
free streaming from the Sun. The last two terms in Eq. 2.3 account for energy release due

to gravity where Cp is the specific heat at constant pressure and ¢ is given by

5o _ Olnp
N OlnT)py.’

P, X; indicates constant pressure and elemental composition. The fourth equation is energy
transport with temperature at a give point as the proxy for energy,

(2.3)

ar  GmT (2.4)
dm — 4wriP '
The dimensionless quantity V = zﬁgg is a function of the “microphysics” in the region it

is describing. In the radiative zone, Fig. 2.1, it is given by

3 Kkl P

Viad = GG Tl

(2.5)
where o is the Stefan-Boltzmann constant and s is the opacity. An adiabatic temperature
gradient from the equation of state, V,q = (0InT/91n P), where s is the specific entropy,
can be used deep in the convective zone but not in the outermost layers. Convection and
turbulence in these layers makes the calculation of V difficult. Full solutions of the Navier-
Stokes equations are computationally intensive especially since the time scales are much
shorter than the 10 Myrs time scale used for stellar evolution. For this reason convection
is modeled using mixing length theory, introducing a new free parameter «, the mixing
length, to the model.

These equations determine the structure. An additional equation models the
changing composition of the Sun due to nuclear reactions. The evolution of the mass
fraction of the it" isotope, X; is given by,

0X; i
8t :777,7 Zj:rji—zk:nk s (26)



where m; is the mass of the particular isotope, 7j; is the rate that the isotope is being created
from the j** isotope, and r;;, accounts for the destruction of the k* isotope. The effects
of convection and diffusion needs to be included. Diffusion includes traditional diffusion
and the gravitational settling of heavy elements. The inclusion of diffusion was a major
improvement in the early 1990’s [2].

Four boundary conditions are required for a particular solution. Normally, the
first two are the solar radius and the luminosity evaluated at the center of the Sun, both
zero. The second two are the temperature and pressure at the surface of the Sun. These are
non-trivial; the solar atmosphere is not well defined. Thankfully for neutrino predictions,
the precise treatment of these boundary conditions does not significantly affect the interior.
The equation of state is also needed to relate the six unknowns, r, P, [, T', X;, and p. The
simplest equation of state is the ideal gas law, which effectively models stars since thermal
pressure dominates. However, it neglects many non-negligible effects due to “microscopic”
physics. These “microscopic” effects include ionization, radiation pressure, degeneracy, etc.
The equation of state is usually tabulated by more elaborate algorithms, the details of which
are determined by the goals of the solar model being constructed.

Solar models are often constructed for specific problems. Solar models focussing on
neutrino flux predictions need to focus on the details of the nuclear reactions and the opacity.
The opacity determines the temperature gradient which determines the reaction rates. The
solar model that will be examined here is that of Bahcall, Serenelli, and Basu (BSB)][3].
This model is the last in a series spanning more than 40 years[2]. Monte Carlo techniques
are exploited to study the error propagation, making this one of the best established models
predicting neutrino fluxes.

The foundation of BSB is the Garching stellar evolution code. The radiative
opacity is based on the individual elemental abundances, X;, instead of the total heavy
element abundance, Z[3]. For reference, abundances are usually defined, X + Y + Z = 1,
where X is the hydrogen abundance, Y is the helium abundance, and Z is all heavier
elements. Using the individual heavy element abundances is in the Garching code is an
important improvement because the elements that remain only partially ionized until very
deep in the Sun, like Fe, contribute much more to the opacity. The opacity is calculated
using Opacity Project group codes, OP opacities[4]. The uncertainty in the opacity is
estimated from solar models constructed with the OPAL opacities[5]. Both of these opacities
do not incorporate molecular physics so the tables of Ferguson et al.[6] are used at lower
temperatures. The equation of state that is from OPAL 2001[7] and the uncertainty from
the OPAL 1996(8] equation of state.

The largest sources of uncertainty in the neutrino flux calculations are the heavy
elemental abundances and to a lesser extent the nuclear reaction network. The abundances
are determined from measurements of atomic and molecular line widths compared to simu-
lations of the solar photosphere. The standard abundances are from Grevesse and Sauval,
(GS98)[9]. These abundances use a 1D MHD simulation of the photosphere. Asplund et
al. (AGS2005) use improved observations and a more complete 3D MHD simulation of
the photosphere to determine the abundances[10]. These improved abundances find signif-
icantly lower abundances for C, N, O, Ne, and Ar as well as a slightly lower abundance
of Si compared to GS98. The small reduction in Si is worth noting as this element ties



Table 2.1: Ten key inputs of the standard solar model of Bahcall, Serenelli, and Basu,
BSBs[3]. A cross section factor is not presented for “Be electron capture since Eq. 26 in
Adelberger et al.[12] is used.

Quantity Value 1o Uncertainty
[%]
Age 4.57 x 105 yr 0.44
Diffusion Routine - 15.0
Luminosity 3.8414 x 10?3 ergs s™' 0.4
Cross Section Factors
p+p 3.94x 107 MeVDb 04
3He+3He 5.4 MeV b 6.0
3He+“He 0.53 keV b 9.4
"Be+e~ - 2
"Be+p 20.5 eV b 3.8
3He+4p 8.6 x 10720 keV b 15.1
UN4p 1.69 keV b 8.4

the abundance of Mg, S, Ca, Fe and Ni in meteorites to that in the photosphere. The
3D MHD simulations have improved the agreement between abundances calculated from
atomic line width versus those calculated from molecular line widths, but as will be argued
here these lower abundances have caused discrepancies between standard solar models and
helioseismology.

The diffusion of He and the heavy elements is modeled using the routine of Thoul
et al. with an estimated uncertainty of 15%][11]. The remaining important inputs to the
BSB model are the age, luminosity of the Sun, and the cross sections governing the nuclear
reaction rates, Table 2.1. The uncertainty on these parameters is assumed to be gaussian
distributed for the purpose of the standard solar model Monte Carlo.

An individual BSB standard solar model starts with a homogenous 1M star.
There are 19 inputs, 10 from Table 2.1 and 9 heavy element abundances (C, N, O, Ne, Mg,
Si, S, Ar, and Fe). In addition, there are 3 free parameters, the initial helium abundance
Yinit, the initial metallicity, Zini, and the mixing length, a. The model evolves in time in
steps of ~10 Myrs. At each step the structure equations are solved and the composition
recomputed. The free parameters are varied until the model converges to the current solar
radius, luminosity and surface composition, Z/X. The convergence requirement is that the
difference between the computed value and adopted values of these parameters agree to
better than a part in 1076.

To study how the errors propagate, Monte Carlo BSB solar models are constructed
with inputs that are selected randomly from within their uncertainties. In [3] the model was
run 5,000 times using the AGS05 composition and the “optimistic” uncertainties presented
in that work (BSB(AGS05)). The model was also run 5,000 times using the GS98 composi-
tion and “historical” uncertainties obtained from the difference between these two compo-



sitions(BSB(GS98)). Finally, the model was run 1,000 times using the AGS05 composition
and the “historical” uncertainties. The solar model neutrino fluxes and helioseismology
predictions come from these simulations.

2.2 Solar Neutrino Production

In our Sun the proton-proton chain provides the bulk of the energy to balance grav-
ity, Table 2.2 . The outcome of one cycle is four protons converted to *He and 26.731 MeV
of energy of which ~0.6 MeV is carried by neutrinos. In stars great than ~1.5 Mg, the
CNO cycle dominates, Table 2.3. The CNO cycle was the original set of reactions proposed
by Bethe[13] for the Sun, but the central temperature of the Sun appears too low, and the
CNO cycle accounts for only ~1.5% of the total energy[14].

Table 2.2: The nuclear reactions of the proton-proton chain. The common name for the
neutrinos from a particular nuclear reaction are listed for reference.

Reaction Name

p+p—d+e +u PP
or

pt+te+p—d+ur pep

p+d— 3He + v

3He + 3He — *He + p + p
or
3He + p — *He + et + 1.  Hep
or
3He + *He — "Be + v

"Be + e — Li + v, "Be
i+ p — “He + *He
or
Be +p— B + v
8B — 8Be* + et + 1, 8B

8Be* — 4He + 4He

The solar neutrino fluxes from the BSB model and the uncertainties from 10,000+
Monte Carlo models are presented in Table 2.4. The flux of neutrinos from the pp and pep
reactions are tightly constrained by the solar luminosity, and are relatively insensitive to the
composition choice. The Hep and "Be reactions are dominated by cross section uncertainties
and are also insensitive to compositions changes. In contrast, the CNO neutrinos are very
sensitive to the exact compositions, and as a result have large uncertainties. The CNO



Table 2.3: The nuclear reactions of the CNO cycles. The common name for the neutrinos
from a particular nuclear reaction are listed for reference.

Reaction Name

p + 12C — BN + v
BN — BC+et+1v. BN
b+ 130 — UN 4 4
p 4+ N — 150 + 4
15O—>15N—|—e+ + v 150

p + N — 12C + “He

or
p 4+ PN — 160 4 4
p+160—>17F+’y
"F— "0 +ef +v. UF

p+ "0 — N + 4He
or
p+ 170 — BF + 4
e~ + IBF 180 44, 3
p + 80 — YF + 4
p + YFe — 160 + 4He
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Table 2.4: The neutrino flux results at the Earth from BSB for the two compositions
considered[3]. The conservative (Cons.) and optimistic (Opt.) uncertainties are quoted for
the AGS05 composition.

Neutrino GS98 Cons. AGS05 Opt. Cons. Normalization

Source  Comp. 1lo Comp. 1o lo (v em~2s71)
PP 5.99  0.05 6.06 0.04 0.05 10'0
pep .42 0.02 145  0.02 0.02 10%
Hep 793 123 825 128 1.26 103
"Be 4.84 051 434 040 0.45 10°
°B .60 fomi o 451 T3 Toe 10°
SN 305 B 200 M R
R - i T
1R 583 132 325 AL P2 109

neutrino fluxes’ sensitivities are from both the opacity and the initial abundances of C, N,
and O. A precise measurement of the CNO fluxes would be useful for determining initial
abundances and testing the assumption of a homogenous ZAMS[15]. 8B decay produces
the most high energy neutrinos. The uncertainty in the flux comes equally from the cross
section and the composition. The “optimistic” uncertainties for the AGS05 compositions
are too small to explain the difference between the GS98 compositions.

The region of the core in which each of the neutrinos is produced is important for
the neutrino physics issues in Chapter 4. The predictions for BSB are shown in Fig. 2.2 for
p-p and in Fig. 2.3 for CNO. These regions are insensitive to compositions[3]. They can help
visualize why certain branches are more sensitive to changes in the abundances. Among
the p-p neutrinos, ®B is produced closest to the high temperature center. The temperature
gradient is sensitive to the opacity and consequently the abundances. The double peaked
distribution for 3N in Fig. 2.3 comes from the CNO cycle operating in steady state near
the center, but stalling as the radius grows and the p+!3C step has insufficient energy to
overcome coulomb repulsion. At even larger radii, the burning of residual >C through
12C(p, 7)'3N produce another source of neutrinos.

The neutrino energy spectra are shown in Fig. 2.4. The pp neutrinos are the most
abundant but detecting them directly is difficult. The far less numerous ®B neutrinos at
higher energies are “easier” to detect since cross sections are higher and backgrounds are
lower. Beta decays in the Sun are all positron emissions and there is always a competing
electron capture branch, but for light nuclei these branchings are negligible[16]. Because of
the importance of the ®B neutrinos, it is critical to understand the neutrino spectrum. *B
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Figure 2.2: The p-p chain’s neutrino producing reactions versus solar radius.
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Figure 2.3: The CNO cycle’s neutrino producing reactions versus solar radius.
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decays to a broad state of ®Be that decays to two ‘He. The principle decay is to an unusually
broad 27 first excited state and the spectrum shows significant deviation from the allowed
shape. There have been several recent measurement of the *He spectrum to determine
the neutrino spectrum including Winter et al.[17] and Ortiz et al.[18]. These experiments
have improved the precision of the measurement compared to the data review by Bahcall
et al.[19], but they disagree especially above ~12 MeV, a region critical for experiment.
The measurement of Winter et al.[17] agrees with the beta spectrum measurement from
Ref. [20] and the recent alpha spectrum from Ref. [21]. The Ortiz et al.[18] spectrum does
not. The Winter spectrum is adopted by SNO[22] but the Ortiz spectrum is still used by
Super Kamiokande[23]. This work will use the Winter spectrum. The experimental limit
on the branching ratio to the ground state of ®Be is < 7.3 x 107° at the 90% confidence
level, and it is neglected[24].
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Figure 2.4: The solar neutrino energy spectra. The neutrino branches with beta spectra

are in units of flux at the Earth per 0.001 MeV. The electron capture lines are shown with
their total fluxes.

2.3 Helioseismology

Helioseismology is the study of solar oscillations, the vibrations of the Sun. The
present summary of this subject relies heavily on the excellent review by Basu and Anitia[l].
The Sun acts as a resonance cavity for acoustic waves produced by turbulence in the con-
vective zone, Fig. 2.1. If the oscillations are assumed to be linear and adiabatic then their
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frequencies can be described by the solution to the the four basic equations of fluid dy-
namics, the continuity equation, the energy equation in the adiabatic approximation, the
momentum equations and the poisson equation. The modes can be expressed in terms of
the spherical harmonics with n, the number of nodes in the radial direction, [, the number
of nodes along the surface, and m, the number of nodes along the equator. The modes with
n > 0 correspond to the p-modes, so called since the dominant restoring force is pressure.
The n = 0 correspond to the fundamental or f-modes. The modes with n < 0 correspond
to the g-modes, g for gravity. Due to their smaller amplitude, the g-modes have not been
reliably detected[1]. The frequencies, v = w/2m are expressed in two terms,

JIIl ax

Unlm = Uni + Z a}' Pl(m) (2.7)
j=1

where a?l are the splitting coefficients and le(m) are orthogonal polynomials in m of degree
j. This second term comes from rotations and magnetic fields which lift the (21 + 1)-fold
degeneracy. The v,,; frequencies describe spherically symmetric effects and are the focus of
most standard solar model comparisons.

The results of a solar model calculation for the frequencies are compared to ob-
servations as shown in Fig. 2.3. The first curve is the n = 0, f-mode, and each subsequent
curve corresponds to series of p-mode oscillations with incremented n. For the p-modes,
the radius at which the increasing sound speed causes total internal reflection, the “lower
turning point”, is approximately given by

c(r)

r2

W =1(1+1) (2.8)
where ¢(r) is the sound speed as a function of radius. Therefore, the frequency and the
degree of a mode in Fig. 2.3 corresponds to the depth in the Sun probed by the mode. The
low degree modes probe through to the center of the Sun, while higher degree modes get
trapped in the outer most layers of the Sun.

The measured frequencies are usually interpreted relative to a known solar model
where the difference between the frequencies and the model are

W R nl 5c2(r) R nl op(r)
P _ /0 K2 ) Ty + /0 Kptalr) S (2.9)

The K™(r)’s are kernels that relate the frequency changes to sound speed and density
changes respectively; they are unique to a particular solar model. The accuracy with which
the density and sound speed profiles can be extracted is limited by the accuracy of the solar
models to and the validity of the linear and adiabatic assumptions for the fluid equations.
It is known that the outermost layers are not well modeled due to convection and that the
linear and adiabatic assumptions break down. The presented treatment can be improved
but helioseismology is limited to r < 0.95R5 due to uncertainties. A lower limit comes from
a deficit of low degree modes. The measurements are limited to r > 0.05R.

Even with these limitations, helioseismology probes 85.75% of the solar volume.
The results for the BSB solar model and the 360 day data set from MDI aboard SOHO[25]
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are shown in Fig. 2.3[26]. The good agreement between the sound speeds and density
profiles from helioseismology and solar models is a major achievement. The discrepancies
introduced by the AGS